Modulation of noradrenergic neurotransmission in isolated rat radial artery

14Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

The present study was designed to characterize the neurogenic contraction of rat radial artery. Electrical field stimulation (EFS) evoked frequency-dependent contraction that was abolished by tetrodotoxin (neuronal Na+ channel blocker), guanethidine (sympathetic neuron blocker), or phentolamine (α-adrenoceptor blocker). The α1- adrenoceptor antagonist prazosin inhibited endothelium-independent contractions to EFS, noradrenaline (NA), and the α1-adrenoceptor agonist phenylephrine. Rauwolscine, an α2-adrenoceptor antagonist, augmented nerve-mediated contractions and reduced sensitivity to NA and the α2-adrenoceptor agonist BHT-920. The β-adrenoceptor antagonist propranolol diminished EFS-elicited contractions, while sensitivity to NA was enhanced by propranolol. Relaxations evoked by isoproterenol, a β-adrenoceptor agonist, were abolished by propranolol. N G-Nitro-L-arginine (L-NOARG), a nitric oxide (NO) synthase inhibitor, increased both nerve-mediated and NA-induced responses in endothelium-intact, but not in endothelium-denuded arteries. Moreover, endothelium-dependent responses to BHT-920 and isoproterenol were modified by L-NOARG. Tetraethylammonium (TEA) or 4-amynopyridine, the Ca2+-activated (KCa) or voltage-dependent K+ (KV) channel blockers, respectively, enhanced the neurogenic contractions observed. TEA but not 4-amynopyridine increased NA-induced contractions. The ATP-sensitive K + (KATP)-channel blocker glibenclamide failed to modify adrenergic contractions. Blockade of capsaicin-sensitive primary afferents increased EFS-induced contractions. In conclusion, adrenergic contractions are predominantly mediated by muscular α1-adrenoceptors, while endothelial α2- and β-adrenoceptors play a minor role. Presynaptic α2- and β-adrenoceptors cannot be precluded. Noradrenergic neurotransmission in rat radial artery seems to be modulated by both stimulation of endothelial NO, KCa, and KV channels and sensory C-fiber activation. ©2009 The Japanese Pharmacological Society.

Cite

CITATION STYLE

APA

Martínez, A. C., Pagán, R. M., Prieto, D., Recio, P., García-Sacristán, A., Hernández, M., & Benedito, S. (2009). Modulation of noradrenergic neurotransmission in isolated rat radial artery. Journal of Pharmacological Sciences, 111(3), 299–311. https://doi.org/10.1254/jphs.09135FP

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free