Tissue transglutaminase (TGase) has been implicated in a number of cellular processes and disease states, where the enzymatic actions of TGase may serve in both, cell survival and apoptosis. To date, the precise functional properties of TGase in cell survival or cell death mechanisms still remain elusive. TGase-mediated cross-linking has been reported to account for the formation of insoluble lesions in conformational diseases. We report here that TGase induces intramolecular cross-linking of β-amyloid peptide (Aβ), resulting in structural changes of monomeric Aβ. Using high resolution mass spectrometry (MS) of cross-linked Aβ peptides, we observed a shift in mass, which is, presumably associated with the loss of NH3 due to enzymatic transamidation activity and hence intramolecular peptide cross-linking. We have observed that a large population of Aβ monomers contained an 0.984 Da increase in mass at a glutamine residue, indicating that glutamine 15 serves as an indispensable substrate in TGase-mediated deamidation to glutamate 15. We provide strong analytical evidence on TGase-mediated Aβ peptide dimerization, through covalent intermolecular cross-linking and hence the formation of Aβ1-40 dimers. Our in depth analyses indicate that TGase-induced post-translational modifications of Aβ peptide may serve as an important seed for aggregation. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Schmid, A. W., Condemi, E., Tuchscherer, G., Chiappe, D., Mutter, M., Vogel, H., … Tsybin, Y. O. (2011). Tissue transglutaminase-mediated glutamine deamidation of β-amyloid peptide increases peptide solubility, whereas enzymatic cross-linking and peptide fragmentation may serve as molecular triggers for rapid peptide aggregation. Journal of Biological Chemistry, 286(14), 12172–12188. https://doi.org/10.1074/jbc.M110.176149
Mendeley helps you to discover research relevant for your work.