Entropy-mediated decision fusion for remotely sensed image classification

6Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

To better classify remotely sensed hyperspectral imagery, we study hyperspectral signatures from a different view, in which the discriminatory information is divided as reflectance features and absorption features, respectively. Based on this categorization, we put forward an information fusion approach, where the reflectance features and the absorption features are processed by different algorithms. Their outputs are considered as initial decisions, and then fused by a decision-level algorithm, where the entropy of the classification output is used to balance between the two decisions. The final decision is reached by modifying the decision of the reflectance features via the results of the absorption features. Simulations are carried out to assess the classification performance based on two AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) hyperspectral datasets. The results show that the proposed method increases the classification accuracy against the state-of-the-art methods.

Cite

CITATION STYLE

APA

Guo, B. (2019). Entropy-mediated decision fusion for remotely sensed image classification. Remote Sensing, 11(3). https://doi.org/10.3390/rs11030352

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free