Numerical simulations on laser absorption enhancement in hybrid metallo-dielectric nanostructured targets for future nuclear astrophysics experiments

2Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The linear electromagnetic interaction between innovative hybrid metallo-dielectric nanostructured targets and laser in visible and IR range is investigated through numerical simulations. The obtained results rely on the optimization of a target based on metallic nanowires (NWs) to enhance light absorption in the visible range of the electromagnetic spectrum. The NWs are grown within the ordered nanoholes of an alumina substrate, thus, forming a plasmonic lattice with triangular symmetry. The remaining volume of the nanoholes on top of the NWs is sealed with a transparent layer of aluminum oxide that is suitable to be chemically modified for containing about 25% of deuterium atoms. The study presented here is carried out within the framework of a scientific program named PLANETA (Plasmonic Laser Absorption on Nano-Engineered Targets) aiming at investigating new laser-matter interaction schemes in the ns domain and for nuclear fusion purposes, involving especially the D-D reaction.

Cite

CITATION STYLE

APA

Pirruccio, G., Rocco, D., De Angelis, C., Sorbello, G., Mascali, D., Torrisi, G., … Palladino, L. (2020). Numerical simulations on laser absorption enhancement in hybrid metallo-dielectric nanostructured targets for future nuclear astrophysics experiments. AIP Advances, 10(4). https://doi.org/10.1063/5.0004123

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free