Use of the gene-expression programming equation and FEM for the high-strength CFST columns

25Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

The ultimate strength of composite columns is a significant factor for engineers and, therefore, finding a trustworthy and quick method to predict it with a good accuracy is very important. In the previous studies, the gene expression programming (GEP), as a new methodology, was trained and tested for a number of concrete-filled steel tube (CFST) samples and a GEP-based equation was proposed to estimate the ultimate bearing capacity of the CFST columns. In this study, however, the equation is considered to be validated for its results, and to ensure it is clearly capable of predicting the ultimate bearing capacity of the columns with high-strength concrete. Therefore, 32 samples with high-strength concrete were considered and they were modelled using the finite element method (FEM). The ultimate bearing capacity was obtained by FEM, and was compared with the results achieved from the GEP equation, and both were compared to the respective experimental results. It was evident from the results that the majority of values obtained from GEP were closer to the real experimental data than those obtained from FEM. This demonstrates the accuracy of the predictive equation obtained from GEP for these types of CFST column.

Cite

CITATION STYLE

APA

Jiang, H., Mohammed, A. S., Kazeroon, R. A., & Sarir, P. (2021). Use of the gene-expression programming equation and FEM for the high-strength CFST columns. Applied Sciences (Switzerland), 11(21). https://doi.org/10.3390/app112110468

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free