Manufacturing of grinding wheels is continuously adapting to new industrial requirements. New abrasives and new wheel configurations, together with wheel wear control allow for grinding process optimization. However, the wear behavior of the new abrasive materials is not usually studied from a scientific point of view due to the difficulty to control and monitor all the variables affecting the tribochemical wear mechanisms. In this work, an original design of pin-on-disk tribometer is developed in a CNC (Computer Numerical Control) grinding machine. An Alumina grinding wheel with special characteristics is employed and two types of abrasive are compared: White Fused Alumina (WFA) and Sol-Gel Alumina (SG). The implemented tribometer reaches sliding speeds of between 20 and 30 m/s and real contact pressures up to 190 MPa. The results show that the wear behavior of the abrasive grains is strongly influenced by their crystallographic structure and the tribometer appears to be a very good tool for characterizing the wear mechanisms of grinding wheels, depending on the abrasive grains.
CITATION STYLE
Godino, L., Pombo, I., Sanchez, J. A., & Izquierdo, B. (2018). An original tribometer to analyze the behavior of abrasive grains in the grinding process. Metals, 8(7). https://doi.org/10.3390/met8070557
Mendeley helps you to discover research relevant for your work.