Characterization of tolerance induction through prenatal marrow transplantation: The requirement for a threshold level of chimerism to establish rather than maintain postnatal skin tolerance

15Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Hematopoietic chimerism resulting from prenatal marrow transplantation does not consistently result in allotolerance for unidentified causes. In a C57BL/6-into-FVB/N murine model, we transplanted T-cell-depleted adult marrow on gestational day 14 to elucidate the immunological significance of chimerism towards postnatal tolerance. Postnatally, chimerism was examined by flow cytometry, and tolerance by skin transplantation and mixed lymphocyte reaction. Regulatory T cells were quantified by FoxP3 expression. Peripheral chimerism linearly related to thymic chimerism, and predicted the degree of graft acceptance with levels >3% at skin placement, yielding consistent skin tolerance. Low- and high-level chimeras had lower intrathymic CD3high expression than microchimeras or untransplanted mice. Regardless of the skin tolerance status in mixed chimeras, donor-specific alloreactivity by lymphocytes was suppressed but could be partially restored by exogenous interleukin-2. Recipients that lost peripheral chimerism did not accept donor skin unless prior donor skin had engrafted at sufficient chimerism levels, suggesting that complete tolerance can develop as a consequence of chimerism-related immunosuppression of host lymphocytes and the tolerogenic effects of donor skin. Thus, hematopoietic chimerism exerted immunomodulatory effects on the induction phase of allograft tolerance. Once established, skin tolerance did not fade away along with spontaneous regression of peripheral and tissue chimerism, as well as removal of engrafted donor skin. Neither did it break following in vivo depletion of increased regulatory T cells, and subcutaneous interleukin-2 injection beneath the engrafted donor skin. Those observations indicate that the maintenance of skin tolerance is multifaceted, neither solely dependent upon hematopoietic chimerism and engrafted donor skin nor on the effects of regulatory T cells or clonal anergy. We conclude that hematopoietic chimerism generated by in utero hematopoietic stem cell transplantation is critical to establish rather than maintain postnatal skin tolerance. Therefore, the diminution of hematopoietic chimerism below a threshold level does not nullify an existing tolerance state, but lessens the chance of enabling complete tolerance. Copyright © 2010 Cognizant Comm. Corp. All rights reserved.

Cite

CITATION STYLE

APA

Chen, J. C., Kuo, M. L., Ou, L. S., Chang, P. Y., Muench, M. O., Shen, C. R., … Fu, R. H. (2010). Characterization of tolerance induction through prenatal marrow transplantation: The requirement for a threshold level of chimerism to establish rather than maintain postnatal skin tolerance. Cell Transplantation, 19(12), 1609–1622. https://doi.org/10.3727/096368910X516583

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free