The nature and behaviour of sediment beneath glaciers influences how they flow and respond to changing environmental conditions. The difficulty of accessing the bed of current glaciers is a key constraint to studying the processes involved. This paper explores an alternative approach by relating sediments under the beds of former mid-latitude ice sheets to changing ice behaviour during a glacial cycle. The paper focuses on the partly marine-based Pleistocene British-Irish ice sheet in the Clyde basin, Scotland. A three-dimensional computation of subsurface glacial sediment distribution is derived from 1260 borehole logs. Sediment distribution is linked to an empirically based reconstruction of ice-sheet evolution, permitting identification of distinctive phases of sedimentation. Maximum sediment mobilization and till deposition (0.04ma-1) occurred during ice advance into the basin from adjacent uplands. Transport distances were generally short. Subglacial processes were influenced locally by the relative stiffness of pre-existing sediments, the permeability of the sub-till lithology, and topography; the resulting mean till thickness is 7.7m with a high standard deviation of 7.0 m. In places, focused till deposition sealed pre-existing permeable substrates, promoting lower effective pressures. Sediment remobilization by meltwater was a key process as ice margins retreated through the basin.
CITATION STYLE
Finlayson, A. G. (2012). Ice dynamics and sediment movement: Last glacial cycle, Clyde basin Scotland. Journal of Glaciology, 58(209), 487–500. https://doi.org/10.3189/2012JoG11J207
Mendeley helps you to discover research relevant for your work.