TSH-mediated TNFα production in human fibrocytes is inhibited by teprotumumab, an IGF-1R antagonist

29Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

Abstract

Purpose: Fibrocytes (FC) are bone marrow-derived progenitor cells that are more abundant and infiltrate the thyroid and orbit in Graves orbitopathy (GO). FCs express high levels of thyrotropin receptor (TSHR) and insulin-like growth factor-1 receptor (IGF-1R). These receptors are physically and functionally associated, but their role in GO pathogenesis is not fully delineated. Treatment of FCs with thyroid stimulating hormone (TSH) or M22 (activating antibody to TSHR) induces the production of numerous cytokines, including tumor necrosis factor α (TNFα). Teprotumumab (TMB) is a human monoclonal IGF-1R blocking antibody currently in clinical trial for GO and inhibits TSHR-mediated actions in FCs. Aim: To characterize the molecular mechanisms underlying TSH-induced TNFα production by FCs, and the role of IGF-1R blockade by TMB. Design: FCs from healthy and GD patients were treated with combinations of TSH, M22, MG132 and AKTi (inhibitors of NF-κB and Akt, respectively), and TMB. TNFα protein production was measured by Luminex and flow cytometry. Messenger RNA expression was quantified by real time PCR. Results: Treatment with TSH/M22 induced TNFα protein and mRNA production by FCs, both of which were reduced when FCs were pretreated with MG132 and AKTi (p<0.0001). TMB decreased TSH-induced TNFα protein production in circulating FCs from mean fluorescent index (MFI) value of 2.92 to 1.91, and mRNA expression in cultured FCs from 141- to 52-fold expression (p<0.0001). TMB also decreased M22-induced TNFα protein production from MFI of 1.67 to 1.12, and mRNA expression from 6- to 3-fold expression (p<0.0001). Conclusion: TSH/M22 stimulates FC production of TNFα mRNA and protein. This process involves the transcription factor NF-κB and its regulator Akt. Blocking IGF-1R attenuates TSH/M22-induced TNFα production. This further delineates the interaction of TSHR and IGF1-R signaling pathways. By modulating the proinflammatory properties of FCs such as TNFα production, TMB may be a promising therapeutic agent for GO.

Cite

CITATION STYLE

APA

Chen, H., Shan, S. J. C., Mester, T., Wei, Y. H., & Douglas, R. S. (2015). TSH-mediated TNFα production in human fibrocytes is inhibited by teprotumumab, an IGF-1R antagonist. PLoS ONE, 10(6). https://doi.org/10.1371/journal.pone.0130322

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free