Formation of new capillaries, a critical component of tissue growth and repair, is a recognized process in the development, formation, and remodeling of bone. Vascular endothelial growth factor (VEGF), a potent angiogenic factor with specific mitogenic actions on endothelial cells, is produced in a regulated manner by many cell types, including osteoblasts. The aim of the present investigation was to test the hypothesis that insulin-like growth factor I (IGF-I), a known osteogenic factor, modulates VEGF expression in osteoblasts. In human SaOS-2 osteoblast-like cells, 10 nM IGF-I increased the abundance of VEGF messenger RNA (mRNA) by 4-fold above the control value at 2 h, and the elevated levels of mRNA returned to near basal by 8 h. IGF-I stimulated VEGF mRNA levels at IGF-I concentrations as low as 1-2 nM. The stability of VEGF mRNA was not increased after IGF-I treatment, and actinomycin D abrogated the enhanced expression of VEGF mRNA by IGF-I, indicating that the action of IGF-I was probably mediated by a transcriptional mechanism. The induction of VEGF mRNA by IGF-I in SaOS-2 cells was associated with an increase in immunoreactive VEGF protein, as detected by immunoblot analysis. IGF-I also increased the expression of VEGF mRNA in primary murine osteoblasts, which confirmed that the actions of IGF- I were not unique to SaOS-2 cells. We conclude that IGF-I enhances osteoblast synthesis of VEGF, which may then act locally on endothelium to stimulate angiogenesis, an essential component of bone growth and remodeling.
CITATION STYLE
Goad, D. L., Rubin, J., Wang, H., Tashjian, A. H., & Patterson, C. (1996). Enhanced expression of vascular endothelial growth factor in human SaOS-2 osteoblast-like cells and murine osteoblasts induced by insulin-like growth factor I. Endocrinology, 137(6), 2262–2268. https://doi.org/10.1210/endo.137.6.8641174
Mendeley helps you to discover research relevant for your work.