Background: Quantification of different types of cells is often needed for analysis of histological images. In our project, we compute the relative number of proliferating hepatocytes for the evaluation of the regeneration process after partial hepatectomy in normal rat livers.Results: Our presented automatic approach for hepatocyte (HC) quantification is suitable for the analysis of an entire digitized histological section given in form of a series of images. It is the main part of an automatic hepatocyte quantification tool that allows for the computation of the ratio between the number of proliferating HC-nuclei and the total number of all HC-nuclei for a series of images in one processing run. The processing pipeline allows us to obtain desired and valuable results for a wide range of images with different properties without additional parameter adjustment. Comparing the obtained segmentation results with a manually retrieved segmentation mask which is considered to be the ground truth, we achieve results with sensitivity above 90% and false positive fraction below 15%.Conclusions: The proposed automatic procedure gives results with high sensitivity and low false positive fraction and can be applied to process entire stained sections. © 2010 Ivanovska et al; licensee BioMed Central Ltd.
CITATION STYLE
Ivanovska, T., Schenk, A., Homeyer, A., Deng, M., Dahmen, U., Dirsch, O., … Linsen, L. (2010). A fast and robust hepatocyte quantification algorithm including vein processing. BMC Bioinformatics, 11. https://doi.org/10.1186/1471-2105-11-124
Mendeley helps you to discover research relevant for your work.