Corticotropin releasing hormone (CRH) is essential for stress adaptation by mediating hypothalamic-pituitary-adrenal (HPA) axis, behavioral and autonomic responses to stress. Activation of CRH neurons depends on neural afferents from the brain stem and limbic system, leading to sequential CRH release and synthesis. CRH transcription is required to restore mRNA and peptide levels, but termination of the response is essential to prevent pathology associated with chronic elevations of CRH and HPA axis activity. Inhibitory feedback mediated by glucocorticoids and intracellular production of the repressor, Inducible Cyclic AMP Early Repressor (ICER), limit the magnitude and duration of CRH neuronal activation. Induction of CRH transcription is mediated by the cyclic AMP/protein kinase A/cyclic AMP responsive element binding protein (CREB)-dependent pathways, and requires cyclic AMP-dependent nuclear translocation of the CREB co-activator, Transducer of Regulated CREB activity (TORC). This article reviews current knowledge on the mechanisms regulating CRH neuron activity. © 2011.
CITATION STYLE
Aguilera, G., & Liu, Y. (2012, January). The molecular physiology of CRH neurons. Frontiers in Neuroendocrinology. https://doi.org/10.1016/j.yfrne.2011.08.002
Mendeley helps you to discover research relevant for your work.