The first stage of 3T3-L1 adipocyte differentiation is growth arrest, which is achieved by contact inhibition at confluence. In growth-arrested confluent 3T3-L1 preadipocytes, α-tubulin acetylation and primary-cilium formation were induced. The blockade of primary-cilium formation by suppressing IFT88 or Kif3a inhibited 3T3-L1 adipocyte differentiation. IGF-1 (IGFI)-receptor signaling, which is essential for differentiation induction, was sensitized by the formation of a primary cilium in confluent 3T3-L1 preadipocytes. The receptor located in primary cilium was more sensitive to insulin stimulation than that not located in cilia. During cilium formation, insulin receptor substrate 1 (IRS-1), one of the important downstream signaling molecules of the IGF-1 receptor, was recruited to the basal body at which it was phosphorylated on tyrosine by the receptor kinase in cilia. Akt-1, an important signal molecule of the IGF-1 receptor in adipocyte differentiation, was also activated at the basal body. These IGF-1-receptor signaling processes were all inhibited in IFT88- or Kif3a-knockdown cells. Thus, the primary cilium and its basal body formed an organized signaling pathway for the IGF-1 receptor to induce adipocyte differentiation in confluent 3T3-L1 preadipocytes.
CITATION STYLE
Zhu, D., Shi, S., Wang, H., & Liao, K. (2009). Growth arrest induces primary-cilium formation and sensitizes IGF-1-receptor signaling during differentiation induction of 3T3-L1 preadipocytes. Journal of Cell Science, 122(15), 2760–2768. https://doi.org/10.1242/jcs.046276
Mendeley helps you to discover research relevant for your work.