Scattering properties and internal structure of magnetic filament brushes

6Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Practical applications of polymer brush-like systems rely on a clear understanding of their internal structure. In the case of magnetic nanoparticle filament brushes, the competition between bonding and nonbonding interactions—including long range magnetic dipole-dipole interactions—makes the microstructure of these polymer brush-like systems rather complex. On the other hand, the same interactions open up the possibility to manipulate the meso- and macroscopic responses of these systems by applying external magnetic fields or by changing the background temperature. In this study, we put forward an approach to extract information about the internal structure of a magnetic filament brush from scattering experiments. Our method is based on the mapping of the scattering profiles to the information about the internal equilibrium configurations of the brushes obtained from computer simulations. We show that the structure of the magnetic filament brush is strongly anisotropic in the direction perpendicular to the grafting surface, especially at low temperatures and external fields. This makes slice-by-slice scattering measurements a technique very useful for the study of such systems.

Cite

CITATION STYLE

APA

Pyanzina, E. S., Sánchez, P. A., Cerdà, J. J., Sintes, T., & Kantorovich, S. S. (2017). Scattering properties and internal structure of magnetic filament brushes. Soft Matter, 13(14), 2590–2602. https://doi.org/10.1039/c6sm02606k

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free