Prediction of potential drug-disease associations through deep integration of diversity and projections of various drug features

7Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

Identifying new indications for existing drugs may reduce costs and expedites drug development. Drug-related disease predictions typically combined heterogeneous drug-related and disease-related data to derive the associations between drugs and diseases, while recently developed approaches integrate multiple kinds of drug features, but fail to take the diversity implied by these features into account. We developed a method based on non-negative matrix factorization, DivePred, for predicting potential drug-disease associations. DivePred integrated disease similarity, drug-disease associations, and various drug features derived from drug chemical substructures, drug target protein domains, drug target annotations, and drug-related diseases. Diverse drug features reflect the characteristics of drugs from different perspectives, and utilizing the diversity of multiple kinds of features is critical for association prediction. The various drug features had higher dimensions and sparse characteristics, whereas DivePred projected high-dimensional drug features into the low-dimensional feature space to generate dense feature representations of drugs. Furthermore, DivePred’s optimization term enhanced diversity and reduced redundancy of multiple kinds of drug features. The neighbor information was exploited to infer the likelihood of drug-disease associations. Experiments indicated that DivePred was superior to several state-of-the-art methods for prediction drug-disease association. During the validation process, DivePred identified more drug-disease associations in the top part of prediction result than other methods, benefitting further biological validation. Case studies of acetaminophen, ciprofloxacin, doxorubicin, hydrocortisone, and ampicillin demonstrated that DivePred has the ability to discover potential candidate disease indications for drugs.

Cite

CITATION STYLE

APA

Xuan, P., Song, Y., Zhang, T., & Jia, L. (2019). Prediction of potential drug-disease associations through deep integration of diversity and projections of various drug features. International Journal of Molecular Sciences, 20(17). https://doi.org/10.3390/ijms20174102

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free