When ultra high strength steel (UHSS) sheets with tensile strength over 980 MPa are applied in automobiles, there is a risk that a type of hydrogen embrittlement fracture called delayed fracture may occur while a vehicle is in use. This paper summarizes the effects of stress, strain, diffusible hydrogen content and the forming mode on the hydrogen embrittlement resistance of UHSS sheets for automotive applications. In this study, 1 180 MPa grade ferrite-martensite dual phase steel was used. This material was evaluated by the U-bending and drawn cup methods. It was concluded that high strain, high stress and high diffusible hydrogen content reduced hydrogen embrittlement resistance. In addition, an improved immersion-type hydrogen charging method using an ammonium thiocyanate (NH 4SCN) aqueous solution was introduced in this paper. The NH 4SCN solution enables control of the diffusible hydrogen content from low to high concentrations using the NH 4SCN concentration, and dissolution of the specimens during immersion in NH 4SCN was minimal, making it possible to maintain substantially the same surface condition as before immersion. © 2012 ISIJ.
CITATION STYLE
Takagi, S., Toji, Y., Yoshino, M., & Hasegawa, K. (2012). Hydrogen embrittlement resistance evaluation of ultra high strength steel sheets for automobiles. ISIJ International. https://doi.org/10.2355/isijinternational.52.316
Mendeley helps you to discover research relevant for your work.