BACKGROUND: The widespread occurrence of ALS inhibitor- and glyphosate-resistant Amaranthus palmeri has led to increasing use of protoporphyrinogen oxidase (PPO)-inhibiting herbicides in cotton and soybean. Studies were conducted to confirm resistance to fomesafen (a PPO inhibitor), determine the resistance frequency, examine the resistance profile to other foliar-applied herbicides and investigate the resistance mechanism of resistant plants in a population collected in 2011 (AR11-LAW B) and its progenies from two cycles of fomesafen selection (C1 and C2). RESULTS: The frequency of fomesafen-resistant plants increased from 5% in the original AR11-LAW-B to 17% in the C2 population. The amounts of fomesafen that caused 50% growth reduction were 6-, 13- and 21-fold greater in AR11-LAW-B, C1 and C2 populations, respectively, than in the sensitive ecotype. The AR11-LAW-B population was sensitive to atrazine, dicamba, glufosinate, glyphosate and mesotrione but resistant to ALS-inhibiting herbicides pyrithiobac and trifloxysulfuron. Fomesafen survivors from C1 and C2 populations tested positive for the PPO glycine 210 deletion previously reported in waterhemp (Amaranthus tuberculatus). CONCLUSION: These studies confirmed that Palmer amaranth in Arkansas has evolved resistance to foliar-applied PPO-inhibiting herbicide.
CITATION STYLE
Salas, R. A., Burgos, N. R., Tranel, P. J., Singh, S., Glasgow, L., Scott, R. C., & Nichols, R. L. (2016). Resistance to PPO-inhibiting herbicide in Palmer amaranth from Arkansas. Pest Management Science, 72(5), 864–869. https://doi.org/10.1002/ps.4241
Mendeley helps you to discover research relevant for your work.