Designing Potent α-Glucosidase Inhibitors: A Synthesis and QSAR Modeling Approach for Biscoumarin Derivatives

3Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Nineteen biscoumarins were synthesized, well-characterized, and evaluated against α-glucosidases in vitro. Of these, six compounds (10, 12, 16, and 17-19) were newly synthesized and not previously reported in the chemical literature. The majority of the synthesized derivatives demonstrated significant inhibitory activity. A quantitative structure-activity relationship (QSAR) model was developed, revealing a strong correlation between the anti-α-glucosidase activity and selected molecular descriptors. Based on this model, two new compounds (18 and 19) were designed, which exhibited the strongest inhibition with IC50 values of 0.62 and 1.21 μM, respectively, when compared to the positive control (acarbose) with an IC50 value of 93.63 μM. Enzyme kinetic studies of compounds 18 and 19 revealed their competitive inhibition with Ki values of 3.93 and 1.80 μM, respectively. Computational studies demonstrated that compound 18 could be inserted into the original binding site (OBS) of α-glucosidase MAL12 and form multiple hydrophobic interactions with nearby amino acids, with the bromo group playing an essential role in enhancing the binding strength and stability at the OBS of the enzyme based on the quantum mechanical calculations using the fragment molecular orbital method. These findings provide valuable insights into the design of potent α-glucosidase inhibitors, which may have potential therapeutic applications in the treatment of diabetes and related diseases.

Cite

CITATION STYLE

APA

Phan, T. H. T., Hengphasatporn, K., Shigeta, Y., Xie, W., Maitarad, P., Rungrotmongkol, T., & Chavasiri, W. (2023). Designing Potent α-Glucosidase Inhibitors: A Synthesis and QSAR Modeling Approach for Biscoumarin Derivatives. ACS Omega, 8(29), 26340–26350. https://doi.org/10.1021/acsomega.3c02868

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free