Prevention of peripheral tolerance by a dendritic cell growth factor: Flt3 ligand as an adjuvant

97Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Injections of soluble proteins are poorly immunogenic, and often elicit antigen-specific tolerance. The mechanism of this phenomenon has been an enduring puzzle, but it has been speculated that tolerance induction may be due to antigen presentation by poorly stimulatory, resting B cells, which lack specific immunoglobulin receptors for the protein. In contrast, adjuvants, or infectious agents, which cause the release of proinflammatory cytokines such as tumor necrosis factor α and interleukin 1β in vivo are believed to recruit and activate professional antigen-presenting cells to the site(s) of infection, thereby eliciting immunity. Here we show that administration of Flt3 ligand (FL), a cytokine capable of inducing large numbers of dendritic cells (DCs) in vivo, (a) dramatically enhances the sensitivity of antigen-specific B and T cell responses to systemic injection of a soluble protein, through a CD40-CD40 ligand-dependent mechanism; (b) influences the class of antibody produced; and (c) enables productive immune responses to otherwise tolerogenic protocols. These data support the hypothesis that the delicate balance between immunity and tolerance in vivo is pivotally controlled by DCs, and underscore the potential of FL as a vaccine adjuvant for immunotherapy in infectious disease and other clinical settings.

Cite

CITATION STYLE

APA

Pulendran, B., Smith, J. L., Jenkins, M., Schoenborn, M., Maraskovsky, E., & Maliszewski, C. R. (1998). Prevention of peripheral tolerance by a dendritic cell growth factor: Flt3 ligand as an adjuvant. Journal of Experimental Medicine, 188(11), 2075–2082. https://doi.org/10.1084/jem.188.11.2075

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free