High oxygen concentrations adversely affect the performance of pulmonary surfactant

9Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

BACKGROUND: Although effective in the neonatal population, exogenous pulmonary surfactant has not demonstrated a benefit in pediatric and adult subjects with hypoxic lung injury despite a sound physiologic rationale. Importantly, neonatal surfactant replacement therapy is administered in conjunction with low fractional FIO2 while pediatric/adult therapy is administered with high FIO2. We suspected a connection between FIO2 and surfactant performance. Therefore, we sought to assess a possible mechanism by which the activity of pulmonary surfactant is adversely affected by direct oxygen exposure in in vitro experiments. METHODS: The mechanical performance of pulmonary surfactant was evaluated using 2 methods. First, Langmuir-Wilhelmy balance was utilized to study the reduction in surface area (δA) of surfactant to achieve a low bound value of surface tension after repeated compression and expansion cycles. Second, dynamic light scattering was utilized to measure the size of pulmonary surfactant particles in aqueous suspension. For both experiments, comparisons were made between surfactant exposed to 21% and 100% oxygen. RESULTS: The δA of surfactant was 21.1 ± 2.0% and 35.8 ± 2.0% during exposure to 21% and 100% oxygen, respectively (P =.02). Furthermore, dynamic light-scattering experiments revealed a micelle diameter of 336.0 ± 12.5 μm and 280.2 ± 11.0 μm in 21% and 100% oxygen, respectively (P

Cite

CITATION STYLE

APA

Smallwood, C. D., Boloori-Zadeh, P., Silva, M. R., & Gouldstone, A. (2018). High oxygen concentrations adversely affect the performance of pulmonary surfactant. Respiratory Care, 62(8), 1085–1090. https://doi.org/10.4187/respcare.05388

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free