A line of mice deficient in vitamin D binding protein (DBP) was generated by targeted mutagenesis to establish a model for analysis of DBP's biological functions in vitamin D metabolism and action. On vitamin D- replete diets, DBP(-/-) mice had low levels of total serum vitamin D metabolites but were otherwise normal. When maintained on vitamin D-deficient diets for a brief period, the DBP(-/-), but not DBP(+/+), mice developed secondary hyperparathyroidism and the accompanying bone changes associated with vitamin D deficiency. DBP markedly prolonged the serum half-life of 25(OH)D and less dramatically prolonged the half-life of vitamin D by slowing its hepatic uptake and increasing the efficiency of its conversion to 25(OH)D in the liver. After an overload of vitamin D, DBP(-/-) mice were unexpectedly less susceptible to hypercalcemia and its toxic effects. Peak steady-state mRNA levels of the vitamin D-dependent calbindin-D(9K) gene were induced by 1,25(OH)2D more rapidly in the DBP(-/-) mice. Thus, the role of DBP is to maintain stable serum stores of vitamin D metabolites and modulate the rates of its bioavailability, activation, and end-organ responsiveness. These properties may have evolved to stabilize and maintain serum levels of vitamin D in environments with variable vitamin D availability.
CITATION STYLE
Safadi, F. F., Thornton, P., Magiera, H., Hollis, B. W., Gentile, M., Haddad, J. G., … Cooke, N. E. (1999). Osteopathy and resistance to vitamin D toxicity in mice null for vitamin D binding protein. Journal of Clinical Investigation, 103(2), 239–251. https://doi.org/10.1172/JCI5244
Mendeley helps you to discover research relevant for your work.