BRL1, a leucine-rich repeat receptor-like protein kinase, is functionally redundant with BRI1 in regulating Arabidopsis brassinosteroid signaling

127Citations
Citations of this article
86Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

BRI1-like receptor kinase (BRL1) was identified as an extragenic suppressor of a weak bri1 allele, bri1-5, in an activation-tagging genetic screen for novel brassinosteroid (BR) signal transduction regulators. BRL1 encodes a leucine-rich repeat receptor-like protein kinase (LRR-RLK). Sequence alignment revealed that BRL1 is closely related to BRI1, which is involved in BR perception. Overexpression of a BRL1 cDNA, driven by a constitutive CaMV 35S promoter, recapitulates the bri1-5 suppression phenotypes, and partially complements the phenotypes of a null bri1 allele, bri1-4. Analysis of a BR-specific feedback response gene, CPD, indicates that BRL1 functions in BR signaling. BRL1 expression pattern overlaps with, but is distinct from, that of BRI1. In addition, both the expression level and in vitro kinase autophosphorylation activity of BRL1 are significantly lower than those of BRI1. bri1-5 brl1-1 double mutant plants have enhanced developmental defects relative to bri1-5 mutant plants, revealing that BRL1 plays a partially redundant role with BRI1 in controlling Arabidopsis growth and development. These findings enhance our understanding of functional redundancy and add an additional layer of complexity to RLK-mediated BR signaling transduction in Arabidopsis.

Cite

CITATION STYLE

APA

Zhou, A., Wang, H., Walker, J. C., & Li, J. (2004). BRL1, a leucine-rich repeat receptor-like protein kinase, is functionally redundant with BRI1 in regulating Arabidopsis brassinosteroid signaling. Plant Journal, 40(3), 399–409. https://doi.org/10.1111/j.1365-313X.2004.02214.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free