Structure, Function, and Regulation of a Subfamily of Mouse Zinc Transporter Genes

155Citations
Citations of this article
74Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Zinc is an essential metal for all eukaryotes, and cells have evolved a complex system of proteins to maintain the precise balance of zinc uptake, intracellular storage, and efflux. In mammals, zinc uptake appears to be me. diated by members of the Zrt/Irt-like protein (ZIP) superfamily of metal ion transporters. Herein, we have studied a subfamily of zip genes (zip1, zip2, and zip3) that is conserved in mice and humans. These eight-transmembrane domain proteins contain a conserved 12-amino acid signature sequence within the fourth transmembrane domain. All three of these mouse ZIP proteins function to specifically increase the uptake of zinc in transfected cultured cells, similar to the previously demonstrated functions of human ZIP1 and ZIP2 (Gaither, L. A., and Eide, D. J. (2000) J. Biol. Chem. 275, 5560-5564; Gaither, L. A., and Eide, D. J. (2001) J. Biol. Chem. 276, 22258-22264). No ZIP3 orthologs have been previously studied. Furthermore, this first systematic comparative study of the in vivo expression and dietary zinc regulation of this subfamily of zip genes revealed that 1) zipl mRNA is abundant in many mouse tissues, whereas zip2 and zip3 mRNAs are very rare or moderately rare, respectively, and tissue-restricted in their accumulation; and 2) unlike mouse metallothionein I and zip4 mRNAs (Dufner-Beattie, J., Wang, F., Kuo, Y.-M., Gitschier, J., Eide, D., and Andrews, G. K. (2003) J. Biol. Chem. 278, 33474-33481), the abundance of zip1, zip2, and zip3 mRNAs is not regulated by dietary zinc in the intestine and visceral endoderm, tissues involved in nutrient absorption. These studies suggest that all three of these ZIP proteins may play cell-specific roles in zinc homeostasis rather than primary roles in the acquisition of dietary zinc.

Cite

CITATION STYLE

APA

Dufner-Beattie, J., Langmade, S. J., Wang, F., Eide, D., & Andrews, G. K. (2003). Structure, Function, and Regulation of a Subfamily of Mouse Zinc Transporter Genes. Journal of Biological Chemistry, 278(50), 50142–50150. https://doi.org/10.1074/jbc.M304163200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free