Mechanical, Thermal and Electrical Properties of Epoxy Nanocomposites with Amine-Functionalized Reduced Graphene Oxide via Plasma Treatment

10Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

A suitable functionalization of graphene and its derivatives can further enhance the material properties of nanocomposites. In contrast to chemical functionalization methods that have been extensively researched, functionalization by plasma treatment is relatively unexplored. In this work, we compare the mechanical, thermal and electrical characteristics of an epoxy matrix incorporating loadings from 0.00 to 1.50 wt% of non-functionalized (rGO) and amine-functionalized reduced graphene oxide (frGO) for which the functionalization is realized by plasma processing. No significant difference between the rGO-and frGO-including nanocomposites was observed with respect to the stiffness, strength, specific heat capacity, coefficient of thermal expansion and electrical conductivity. Yet, the composites with 1.50 wt% frGO (rGO) exhibited a thermal conductivity that was 27% (20%) higher than the neat polymer due to the enhanced interface, which enabled a better transfer of heat. In addition, a considerable increase in the specific heat capacity and thermal conductivity was established with rising temperatures. This information will facilitate the choice of materials depending on the loading and functionalization of graphene materials for composite applications with an epoxy matrix.

Cite

CITATION STYLE

APA

Ackermann, A. C., Fischer, M., Wick, A., Carosella, S., Fox, B. L., & Middendorf, P. (2022). Mechanical, Thermal and Electrical Properties of Epoxy Nanocomposites with Amine-Functionalized Reduced Graphene Oxide via Plasma Treatment. Journal of Composites Science, 6(6). https://doi.org/10.3390/jcs6060153

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free