Vertically transmitted symbionts can distort their host's reproduction to increase their own transmission. In Wolbachia and some other symbionts, a particular distortion of this sort is feminization, whereby genetic males, which cannot transmit symbionts, are converted during development into functional females, which do transmit symbionts when they reproduce. In this work, we propose a model to study how feminization intensity (i.e. penetrance) can evolve under different ecological constraints in WZ/ZZ hosts. More specifically, our model incorporates both imperfect vertical and horizontal transmission modes. The model shows that for most parameter values feminizing symbionts drive genetic females to extinction, which in turn favours the evolution of maximum feminization penetrance. Once genetic females are extinct, the actual value of feminization penetrance never depends on the efficiency of vertical transmission. Instead, the model shows that in conditions where the reproductive rate is high at demographic equilibrium, higher feminization levels are favoured. One consequence of this can be, for example, that evolutionarily stable feminization penetrance increases with the host's natural death rate, just as the virulence is predicted to do with the host's natural death rate in classic epidemiological models. Finally, we found that horizontal transmission had no impact on how feminization penetrance evolved when genetic females were extinct. However, horizontal transmission can permit genetic females to coexist with symbionts and, in this case, we demonstrate that the presence of genetic females selects symbionts for lower feminization penetrance.
CITATION STYLE
Ferdy, J. B., Liu, N., & Sicard, M. (2016). Transmission modes and the evolution of feminizing symbionts. Journal of Evolutionary Biology, 29(12), 2395–2409. https://doi.org/10.1111/jeb.12963
Mendeley helps you to discover research relevant for your work.