PALS: Personalized Active Learning for Subjective Tasks in NLP

3Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

For subjective NLP problems, such as classification of hate speech, aggression, or emotions, personalized solutions can be exploited. Then, the learned models infer about the perception of the content independently for each reader. To acquire training data, texts are commonly randomly assigned to users for annotation, which is expensive and highly inefficient. Therefore, for the first time, we suggest applying an active learning paradigm in a personalized context to better learn individual preferences. It aims to alleviate the labeling effort by selecting more relevant training samples. In this paper, we present novel Personalized Active Learning techniques for Subjective NLP tasks (PALS) to either reduce the cost of the annotation process or to boost the learning effect. Our five new measures allow us to determine the relevance of a text in the context of learning users' personal preferences. We validated them on three datasets: Wiki discussion texts individually labeled with aggression and toxicity, and on the Unhealthy Conversations dataset. Our PALS techniques outperform random selection even by more than 30%. They can also be used to reduce the number of necessary annotations while maintaining a given quality level. Personalized annotation assignments based on our controversy measure decrease the amount of data needed to just 25%-40% of the initial size.

Cite

CITATION STYLE

APA

Kanclerz, K., Karanowski, K., Bielaniewicz, J., Gruza, M., Miłkowski, P., Kocon, J., & Kazienko, P. (2023). PALS: Personalized Active Learning for Subjective Tasks in NLP. In EMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings (pp. 13326–13341). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/2023.emnlp-main.823

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free