Human-induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) have been used to screen and characterize drugs and to reveal mechanisms underlying cardiac diseases. However, before hiPSC-CMs can be used as a reliable experimental model, the physiological mechanisms underlying their normal function should be further explored. Accordingly, a major feature of hiPSC-CMs is automaticity, which is regulated by both Ca2+ and membrane clocks. To investigate the mechanisms coupling these clocks, we tested three hypotheses: (1) normal automaticity of spontaneously beating hiPSC-CMs is regulated by local Ca2+ releases (LCRs) and cAMP/PKA-dependent coupling of Ca2+ clock to M clock; (2) the LCR period indicates the level of crosstalk within the coupled-clock system; and (3) perturbing the activity of even one clock can lead to hiPSC-CM–altered automaticity due to diminished crosstalk within the coupled-clock system. By measuring the local and global Ca2+ transients, we found that the LCRs properties are correlated with the spontaneous beat interval. Changes in cAMP-dependent coupling of the Ca2+ and M clocks, caused by a pharmacological intervention that either activates the β-adrenergic or cholinergic receptor or upregulates/downregulates PKA signaling, affected LCR properties, which in turn altered hiPSC-CMs automaticity. Clocks’ uncoupling by attenuating the pacemaker current If or the sarcoplasmic reticulum Ca2+ kinetics, decreased hiPSC-CMs beating rate, and prolonged the LCR period. Finally, LCR characteristics of spontaneously beating (at comparable rates) hiPSC-CMs and rabbit SAN are similar. In conclusion, hiPSC-CM automaticity is controlled by the coupled-clock system whose function is mediated by Ca2+-cAMP-PKA signaling.
CITATION STYLE
Mazgaoker, S., Weiser-Bitoun, I., Brosh, I., Binah, O., & Yaniv, Y. (2023). cAMP-PKA signaling modulates the automaticity of human iPSC-derived cardiomyocytes. Journal of General Physiology, 155(1). https://doi.org/10.1085/jgp.202213153
Mendeley helps you to discover research relevant for your work.