Reported matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) identification rates of Gram-positive rods (GPR) are low compared to identification rates of Gram-positive cocci. In this study, three sample preparation methods were compared for MALDI-TOF MS identification of 190 well-characterized GPR strains: direct transfer, direct transfer-formic acid preparation, and ethanol-formic acid extraction. Using the interpretation criteria recommended by the manufacturer, identification rates were significantly higher for direct transfer-formic acid preparation and ethanol-formic acid extraction than for direct transfer. Reducing the species cutoff from 2.0 to 1.7 significantly increased species identification rates. In a subsequent prospective study, 215 clinical GPR isolates were analyzed by MALDI-TOF MS, and the results were compared to those for identification using conventional methods, with discrepancies being resolved by 16S rRNA and rpoB gene analysis. Using the direct transfer-formic acid preparation and a species cutoff of 1.7, congruencies on the genus and species levels of 87.4% and 79.1%, respectively, were achieved. In addition, the rate of nonidentified isolates dropped from 12.1% to 5.6% when using an extended database, i.e., the Bruker database amended by reference spectra of the 190 GPR of the retrospective study. Our data demonstrate three ways to improve GPR identification by the Bruker MALDI Biotyper, (i) optimize sample preparation using formic acid, (ii) reduce cutoff scores for species identification, and (iii) expand the database. Based on our results, we suggest an identification algorithm for the clinical laboratory combining MALDI-TOF MS with nucleic acid sequencing. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
CITATION STYLE
Schulthess, B., Bloemberg, G. V., Zbinden, R., Böttger, E. C., & Hombach, M. (2014). Evaluation of the bruker MALDI biotyper for identification of gram-positive rods: Development of a diagnostic algorithm for the clinical laboratory. Journal of Clinical Microbiology, 52(4), 1089–1097. https://doi.org/10.1128/JCM.02399-13
Mendeley helps you to discover research relevant for your work.