Ginsenoside Rg1 Mitigates Porcine Intestinal Tight Junction Disruptions Induced by LPS through the p38 MAPK/NLRP3 Inflammasome Pathway

8Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Inflammation leads to porcine tight junction disruption of small intestinal epithelial cells, resulting in intestinal dysfunction. Herein, we established lipopolysaccharide (LPS)-induced in-vivo and in-vitro inflammatory models. The results revealed that LPS induced tight junction disruption in IPEC-J2 cells by downregulating tight-junction-related protein zonula occludens-1 (ZO-1), occludin and claudin-1 expression, while ginsenoside Rg1 rescued such inhibition and abrogated the upregulated expression of phosphorylation p38 MAPK. The p38 MAPK inhibitor (SB203580) showed a similar effect with Rg1 and attenuated the LPS-induced inhibition of ZO-1, occludin and claudin-1 expression, which is consistent with the reduced expression of NLRP3 inflammasome and IL-1β. Furthermore, the specific inhibitors of NLRP3 and IL-1β result in increased expression of tight-junction-related protein, demonstrating that p38 MAPK signaling was associated with Rg1 suppression of tight junction disruption. Besides, LPS treatment decreased the expression of ZO-1, occludin and claudin-1 through p38 MAPK signaling, and caused abnormal morphological changes in murine ileum. Meanwhile, Rg1 attenuated the decreased expression of ZO-1, occludin and claudin-1 and partially alleviated LPS-induced morphological changes in murine ileum. In summary, these findings characterized a novel mechanism by which Rg1 alleviates LPS-induced intestinal tight junction disruption by inhibiting the p38 MAPK-mediated NLRP3 inflammasome pathway.

Cite

CITATION STYLE

APA

Kang, J., Zhou, Y., Zhu, C., Ren, T., Zhang, Y., Xiao, L., & Fang, B. (2022). Ginsenoside Rg1 Mitigates Porcine Intestinal Tight Junction Disruptions Induced by LPS through the p38 MAPK/NLRP3 Inflammasome Pathway. Toxics, 10(6). https://doi.org/10.3390/toxics10060285

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free