The Influence of Organic Matter Origin on the Chlorine Bulk Decay Coefficient in Reclaimed Water

N/ACitations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Using reclaimed water has been increasing to manage water shortages arising due to climate change. Research has been conducted on reclaimed water production, but few studies have investigated the pipe network and supply of reclaimed water. Reclaimed water contains greater amounts of organic matter, nutrients, and ionic substances compared to tap water. Therefore, it is highly likely to cause problems, such as water pollution due to microbial propagation in pipes, and leakage due to pipe corrosion, which interfere with water supply system operations. This study investigated the residual chlorine decay characteristics of chlorine disinfectants applied to a control biofilm in reclaimed water pipe networks. The bulk decay coefficient was compared between reclaimed water and a humic acid solution, and the origin of organic matter was analyzed using fluorescence excitation-emission matrices. The experimental results show that residual chlorine was consumed because protein and amino acid-based organic matter reacted more rapidly with chlorine than natural organic matter, such as humic acid. Moreover, chlorine bulk decay occurred rapidly in reclaimed water when total organic carbon was 3 mg/L or higher. These results confirm that removing organic matter during reclaimed water treatment may affect the management of the pipe network system.

Cite

CITATION STYLE

APA

Kang, S. W., & Ahn, K. H. (2022). The Influence of Organic Matter Origin on the Chlorine Bulk Decay Coefficient in Reclaimed Water. Water (Switzerland), 14(5). https://doi.org/10.3390/w14050765

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free