Mesenchymal stem-cell transplantation for hypoxic-ischemic brain injury in neonatal rat model

110Citations
Citations of this article
77Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Neonatal hypoxic-ischemic brain injury (HIE) remains a major cause of neurologic disabilities. However, many experimental therapies have shown limited successes. We assessed whether human mesenchymal stem cells (MSCs) could be transplanted in the HIE rat brain to improve neurologic disabilities. P7 SD rats were either subjected to left carotid artery ligation and hypoxic exposure [hypoxia-ischemia (HI)] or sham operation and normoxic exposure (sham). On P10, rat pubs received either PKH26-labeled MSCs or buffer via intracardial injection, resulting in four experimental groups: sham-buffer, sham-MSC, HI-buffer, and HI-MSC. Cylinder test and accelerating rotarod test were performed 14, 20, 30, and 40 d after injection. Six weeks after injection, cresyl violet and double immunofluorescence staining were performed. MSCs were transplanted to the whole brain mainly after HI. Glial fibrillary acidic protein and OX42 were more abundantly colocalized with MSC than neuronal specific nuclear protein or myelin basic protein. There were no significant differences in the total amounts and cell types between the lesioned and nonlesioned hemisphere. The lesioned hemispheric volume was decreased after HI (p = 0.012) but not restored by MSC. Neurologic performance was significantly impaired only on the cylinder test after HI (p = 0.034), and MSC transplants improved it (p = 0.010). These suggest MSC can be a candidate for the treatment of neonatal HIE. Copyright © 2009 International Pediatric Research Foundation, Inc.

Cite

CITATION STYLE

APA

Lee, J. A., Kim, B. I., Jo, C. H., Choi, C. W., Kim, E. K., Kim, H. S., … Choi, J. H. (2010). Mesenchymal stem-cell transplantation for hypoxic-ischemic brain injury in neonatal rat model. Pediatric Research, 67(1), 42–46. https://doi.org/10.1203/PDR.0b013e3181bf594b

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free