Ontogenetic series of extinct taxa are rare. However, if preserved, fossil embryos and juveniles can provide evidence of developmental plasticity as related to ecological specialization. Here, we describe articulated and isolated juvenile material found in close association with an adult mesosaurid Stereosternum tumidum (MB.R.2089) from Lower Permian sediments in Brazil, housed in the collection of the Museum für Naturkunde Berlin. Stylopodial, zeugopodial, and autopodial elements are not yet completely ossified in the juveniles, as indicated by compression artifacts on the surface of the bone. These correspond to internal ossification processes, which have been demonstrated in other aquatic taxa. Quantitative analysis of measurements in juvenile and adult material reveals differing growth rates between limb elements: hind limb zeugopodia, which are massive and elongate in the adult as needed for propulsion, are already comparatively larger in the juvenile than the humeri, femora, and also the zeugopodia of the forelimb. This pattern differs from that seen in another extinct aquatic reptile, Hovasaurus boulei. Nevertheless, we attribute the accelerated growth rate or earlier onset of ossification to be a potential developmental pathway generating limb element variation in the adult present in 280 million year old mesosaurs, which are known for their fully aquatic lifestyle, in which the hind limbs play a more prominent role than the forelimbs.
CITATION STYLE
Bickelmann, C., & Tsuji, L. A. (2018). A case study of developmental palaeontology in Stereosternum tumidum (Mesosauridae, Parareptilia). Fossil Record, 21(1), 109–118. https://doi.org/10.5194/fr-21-109-2018
Mendeley helps you to discover research relevant for your work.