The glaring need for energy management in a petroleum refining industry is as a result of significant refinery energy costs, typically 40-50% of operating costs. Consequently, energy auditing is frequently carried out to identify energy management opportunities for higher profitability. Hydrogen management in a refining plant by means of the hydrogen pinch analysis approach aimed at identifying the optimum hydrogen network has been recognized as an effective way of optimizing the processes. The numerous benefits of hydrogen management include maximum processing revenue as a result of reduced hydrogen system operating costs and production benefits, minimum capital investment, reduced carbon dioxide emissions, and more importantly, up to 20% cost savings from energy efficiency improvements. Hydrogen pinch technology has been employed in this study to discover optimum hydrogen distribution systems which can be a potential energy management opportunity in a refining industry. The goal was to identify shortcomings in the hydrogen distribution of the system so as to improve the energy utilization of the plant. Analysis of the case study resulted in identification of optimum hydrogen target for the system. Achieving the target will reduce the power consumption of the catalytic reforming unit by 10.8% and also help to conserve hydrogen use by more than 20%. Implementation of suggestions for efficient utilization of energy made will increase the profit as well as the operating costs. However, there will be annual increase in marginal revenue as the profit is considerably greater than the operating costs. The payback period and return on investment (ROI) of these suggestions are less than 3yrs and 28%-44% (depending on the option adopted) respectively. Another significant advantage of the project is that it will reduce the gas flaring and helps prepare the refinery for future environmental challenges.
CITATION STYLE
K. Oduola, M. (2015). Hydrogen Pinch Analysis of a Petroleum Refinery as an Energy Management Strategy. American Journal of Chemical Engineering, 3(2), 47. https://doi.org/10.11648/j.ajche.s.2015030201.16
Mendeley helps you to discover research relevant for your work.