Graphene has been actively investigated as an electronic material owing to many excellent physical properties, such as high charge mobility and quantum Hall effect, due to the characteristics of a linear band structure and an ideal two-dimensional electron system. However, the correlations between the transport characteristics and the spin states of charge carriers or atomic vacancies in graphene have not yet been fully elucidated. Here, we show the spin states of single-layer graphene to clarify the correlations using electron spin resonance (ESR) spectroscopy as a function of accumulated charge density using transistor structures. Two different electrically induced ESR signals were observed. One is originated from a Fermi-degenerate two-dimensional electron system, demonstrating the first observation of electrically induced Pauli paramagnetism from a microscopic viewpoint, showing a clear contrast to no ESR observation of Pauli paramagnetism in carbon nanotubes (CNTs) due to a one-dimensional electron system. The other is originated from the electrically induced ambipolar spin vanishments due to atomic vacancies in graphene, showing a universal phenomenon for carbon materials including CNTs. The degenerate electron system with the ambipolar spin vanishments would contribute to high charge mobility due to the decrease in spin scatterings in graphene.
CITATION STYLE
Fujita, N., Matsumoto, D., Sakurai, Y., Kawahara, K., Ago, H., Takenobu, T., & Marumoto, K. (2016). Direct observation of electrically induced Pauli paramagnetism in single-layer graphene using ESR spectroscopy. Scientific Reports, 6. https://doi.org/10.1038/srep34966
Mendeley helps you to discover research relevant for your work.