Human Mesenchymal Stem Cell Secretome Driven T Cell Immunomodulation Is IL-10 Dependent

50Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

Abstract

The Human Mesenchymal Stem Cell (hMSC) secretome has pleiotropic effects underpinning its therapeutic potential. hMSC serum-free conditioned media (SFCM) contains a variety of cytokines, with previous studies linking a changed secretome composition to physoxia. The Jurkat T cell model allowed the efficacy of SFCM vs. serum-free media (SFM) in the suppression of immunological aspects, including proliferation and polarisation, to be explored. Cell growth in SFM was higher [(21% O2 = 5.3 × 105 ± 1.8 × 104 cells/mL) and (2% O2 = 5.1 × 105 ± 3.0 × 104 cells/mL)], compared to SFCM [(21% O2 = 2.4 × 105 ± 2.5 × 104 cells/mL) and (2% O2 = 2.2 × 105 ± 5.8 × 103 cells/mL)]. SFM supported IL-2 release following activation [(21% O2 = 5305 ± 211 pg/mL) and (2% O2 = 5347 ± 327 pg/mL)] whereas SFCM suppressed IL-2 secretion [(21% O2 = 2461 ± 178 pg/mL) and (2% O2 = 1625 ± 159 pg/mL)]. Anti-inflammatory cytokines, namely IL-4, IL-10, and IL-13, which we previously confirmed as components of hMSC SFCM, were tested. IL-10 neutralisation in SFCM restored proliferation in both oxygen environments (SFM/SFCM+antiIL−10 ~1-fold increase). Conversely, IL-4/IL-13 neutralisation showed no proliferation restoration [(SFM/SFM+antiIL−4 ~2-fold decrease), and (SFM/SFCM+antiIL−13 ~2-fold decrease)]. Present findings indicate IL-10 played an immunosuppressive role by reducing IL-2 secretion. Identification of immunosuppressive components of the hMSC secretome and a mechanistic understanding of their action allow for the advancement and refinement of potential future cell-free therapies.

Author supplied keywords

Cite

CITATION STYLE

APA

Shephard, M. T., Merkhan, M. M., & Forsyth, N. R. (2022). Human Mesenchymal Stem Cell Secretome Driven T Cell Immunomodulation Is IL-10 Dependent. International Journal of Molecular Sciences, 23(21). https://doi.org/10.3390/ijms232113596

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free