ZnO as a functional material, a review

271Citations
Citations of this article
654Readers
Mendeley users who have this article in their library.

Abstract

Zinc oxide (ZnO) is a fascinating wide band gap semiconductor material with many properties that make it widely studied in the material science, physics, chemistry, biochemistry, and solid-state electronics communities. Its transparency, possibility of bandgap engineering, the possibility to dope it into high electron concentrations, or with many transition or rare earth metals, as well as the many structures it can form, all explain the intensive interest and broad applications. This review aims to showcase ZnO as a very versatile material lending itself both to bottom-up and top-down fabrication, with a focus on the many devices it enables, based on epitaxial structures, thin films, thick films, and nanostructures, but also with a significant number of unresolved issues, such as the challenge of efficient p-type doping. The aim of this article is to provide a wide-ranging cross-section of the current state of ZnO structures and technologies, with the main development directions underlined, serving as an introduction, a reference, and an inspiration for future research.

Cite

CITATION STYLE

APA

Borysiewicz, M. A. (2019). ZnO as a functional material, a review. Crystals, 9(10). https://doi.org/10.3390/cryst9100505

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free