Computational Inertial Microfluidics: Optimal Design for Particle Separation

6Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

Following the emergence of many blood transfusion-associated diseases, novel passive cell separation technologies, such as microfluidic devices, are increasingly designed and optimized to separate red blood cells (RBCs) and white blood cells (WBCs) from whole blood. These systems allow for the rapid diagnosis of diseases without relying on complicated and expensive hematology instruments such as flow microscopes, coagulation analyzers, and cytometers. The inertia effect and the impact of intrinsic hydrodynamic forces, the Dean drag force (FD), and the inertial lift force (FL) on the migration of particles within curved and complex confined channels have been explored theoretically, computationally, and experimentally. This study aimed to optimize the dimensions of a microfluidic channel for fast particle propagation and separation. Several spiral geometries with different cross-sections were tested using computational fluid dynamics (CFD) to separate two particle types representing RBCs and WBCs. The chosen three geometries consist of a single inlet, two outlets, and three spiral turns, each having a different cross-sectional height (120, 135, and 150 µm). Particle separation was successfully achieved in the 135 µm-height microchannel, while other microchannels demonstrated mixed particle types at the outlets.

Cite

CITATION STYLE

APA

Saha, S. C., Francis, I., & Nassir, T. (2022). Computational Inertial Microfluidics: Optimal Design for Particle Separation. Fluids, 7(9). https://doi.org/10.3390/fluids7090308

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free