The Energy Internet (EI) has been proposed as an evolution of the power system in order to improve its efficiency in terms of energy generation, transmission and consumption. It aims to make the use of renewable energy effective. Herein, the energy router has been considered the crucial element that builds the net structure between the different EI components by connecting and controlling the bidirectional power and data flow. The increased use of renewable energy sources in EI has contributed to the creation of a new competitive energy trading market known as peer-to-peer energy trading, which enables each component to be part of the trading process. As a consequence, the concept of energy routing is increasingly relevant. In fact, there are three issues that need to be taken into account during the energy routing process: the subscriber matching, the energy-efficient path and the transmission scheduling. In this work, we first proposed a peer-to-peer energy trading scheme to ensure a controllable and reliable EI. Then, we introduced a new energy routing approach to address the three routing issues. A subscriber matching mechanism is designed to determine which producer/producers should be assigned for each consumer by optimizing the energy cost and transmission losses. This mechanism provides a solution for both mono and multi-source consumers. An improved ant colony optimization-based energy routing protocol was developed to determine a non-congestion minimum loss path. For the multi-source consumer case, an energy particle swarm optimization algorithm was proposed to choose a set of producers and to decide the amount of energy that should be collected from each producer to satisfy the consumer request. Finally, the performance of the proposed protocol, in terms of power losses, cost and computation time was compared to the best existing algorithms in the literature. Simulation results show the effectiveness of the proposed approach.
CITATION STYLE
Hebal, S., Mechta, D., Harous, S., & Dhriyyef, M. (2021). Hybrid energy routing approach for energy internet. Energies, 14(9). https://doi.org/10.3390/en14092579
Mendeley helps you to discover research relevant for your work.