Depletion of the stratospheric ozone layer is mainly caused by emissions of persistent halocarbons of anthropogenic origin. The resulting increase of solar ultraviolet radiation at the Earth's surface is associated with increased exposure of humans and increased human health damage. Here we assessed the change in human health damage caused by three types of skin cancer and cataract in terms of (healthy) years of life lost per kiloton emission reduction of an ozone-depleting substance (ODS). This so-called characterization factor is used in Life Cycle Assessments (LCAs). Characterization factors are provided for the emissions of five chlorofluorocarbons, three hydrochlorofluorocarbons, three (bromine-containing) halons, carbon tetrachloride, methyl chloroform, and anthropogenic emissions of methyl bromide. We employed dynamic calculations on a global scale for this purpose, taking physical and social geographic data into account such as skin tones, population density, average age, and life expectancy. When emission rates of all ODSs in 2007 are multiplied by our characterization factors, the resulting number of years of life lost may be a factor of 5 higher than reported previously. This increase is merely explained through the global demographic development until 2100 we took into account. © 2010 American Chemical Society.
CITATION STYLE
Struijs, J., Van Dijk, A., Slaper, H., Van Wijnen, H. J., Velders, G. J. M., Chaplin, G., & Huijbregts, M. A. J. (2010, January 1). Spatial- and time-explicit human damage modeling of ozone depleting substances in life cycle impact assessment. Environmental Science and Technology. https://doi.org/10.1021/es9017865
Mendeley helps you to discover research relevant for your work.