The synthesis and full characterization of new air-stable AgI and CuI complexes bearing structurally bulky expanded-ring N-heterocyclic carbene (erNHC) ligands is presented. The condensation of protonated NHC salts with Ag2O afforded a collection of AgI complexes, and their first use as ligand transfer reagents led to novel isostructural CuI or AuI complexes. In situ deprotonation of the NHC salts in the presence of a copper(I) source, provides a library of new CuI complexes. The solid-state structures feature large N-CNHC-N angles (118–128°) and almost identical angles between the aryl groups on the nitrogen atoms and the plane of the N-C-N unit of the carbene (i.e. torsion angles close to 0°). Among the steric parameters, the percent buried volume (%Vbur) values span easily in the 50–57 % range, and that one of (9-Dipp)CuBr complex (%Vbur=57.5) overcomes to other known erNHC–metal complexes reported to date. Preliminary catalytic experiments in the copper-catalyzed coupling between N-tosylhydrazone and phenylacetylene, afforded 76–93 % product at the 0.5–2.5 mol % catalyst loading, proving the stability of CuI erNHC complexes at elevated temperatures (100 °C).
CITATION STYLE
Cervantes-Reyes, A., Rominger, F., & Hashmi, A. S. K. (2020). Sterically Demanding AgI and CuI N-Heterocyclic Carbene Complexes: Synthesis, Structures, Steric Parameters, and Catalytic Activity. Chemistry - A European Journal, 26(24), 5530–5540. https://doi.org/10.1002/chem.202000600
Mendeley helps you to discover research relevant for your work.