Pre-frontal Cortex Oxygenation Changes During Aerobic Exercise in Elite Athletes Experiencing Sport-Related Concussion

12Citations
Citations of this article
65Readers
Mendeley users who have this article in their library.

Abstract

Aims: Recent research suggests that aerobic exercise can be performed safely within the first week following a concussion injury and that early initiation of exercise may speed recovery. To better understand the physiological changes during a concussion, we tested the hypothesis that mild-to-intense exercise testing can be performed within days immediately following injury, and can be used to discern differences between the concussed and normal healthy state. Thus, the purpose was to observe the cerebral hemodynamic responses to incremental exercise testing performed acutely post-concussion in high-performance athletes. Methods: This study was a within- and between-experimental design, with seven male university ice hockey teams participating. A subgroup of five players acted as control subjects (CON) and was tested at the same time as the 14 concussed (mTBI) players on Day 2, 4, and 7 post-concussion. A 5-min resting baseline and 5-min exercise bouts of mild (EX1), moderate (EX2), and high (EX3) intensity exercise were performed on a cycle ergometer. Near-infrared spectroscopy was used to monitor pre-frontal cortex oxy-haemoglobin (HbO2), deoxy-haemoglobin (HHb), and total blood volume (tHb) changes. Results: ANOVA compared differences between testing days and groups, and although large percentage changes in HbO2 (20–30%), HHb (30–40%), and tHb (30–40%) were recorded, no significant (p ≤ 0.05) differences in cerebral hemodynamics occurred between mTBI vs. CON during aerobic exercise testing on any day post-injury. Furthermore, there was a linear relationship between exercise intensity vs. cerebral hemodynamics during testing for each day (r2 = 0.83–0.99). Conclusion: These results demonstrate two novel findings: (1) mild-to-intense aerobic exercise testing can be performed safely as early as Day 2 post-concussion injury in a controlled laboratory environment; and (2) evidence-based objective measures such as cerebral hemodynamics can easily be collected using near-infrared spectroscopy (NIRS) to monitor physiological changes during the first-week post-injury. This research has important implications for monitoring physiological recovery post-injury and establishing new rehabilitation guidelines.

Cite

CITATION STYLE

APA

Neary, J. P., Dudé, C. M., Singh, J., Len, T. K., & Bhambhani, Y. N. (2020). Pre-frontal Cortex Oxygenation Changes During Aerobic Exercise in Elite Athletes Experiencing Sport-Related Concussion. Frontiers in Human Neuroscience, 14. https://doi.org/10.3389/fnhum.2020.00035

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free