Skip to main content

A comparative feature analysis for gear pitting level classification by using acoustic emission, vibration and current signals

8Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Your institution provides access to this article.

Abstract

this paper addresses the comparison of features, extracted in the time domain, from vibration, acoustic emission, and current signals, for the identification of eight levels of severity of pitting in a gearbox. The vibration, acoustic emission, and current signals were first acquired using a gearbox lab experimental test bed. Then, twenty features were extracted in the time domain from each signal; these features are ranked by Chi squared and entered into the KNN classifier, which allows the evaluation of the classification accuracy for each acquired signal and performing an analysis of the features. The results indicate that the vibration and AE signals identified the pitting level better than the current signal.

Cite

CITATION STYLE

APA

Sánchez, R. V., Lucero, P., Vásquez, R. E., Cerrada, M., & Cabrera, D. (2018). A comparative feature analysis for gear pitting level classification by using acoustic emission, vibration and current signals (Vol. 51, pp. 346–352). Elsevier B.V. https://doi.org/10.1016/j.ifacol.2018.09.600

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free