Exposure to some environmental pollutants can have potent endocrine-disrupting effects, thereby promoting hormone imbalance and cardiometabolic diseases such as non-alcoholic fatty liver disease (NAFLD), diabetes, and cardiorenal diseases. Recent evidence also suggests that many environmental pollutants can reorganize the gut microbiome to potentially impact these diverse human diseases. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is among the most potent endocrine-disrupting dioxin pollutants, yet our understanding of how TCDD impacts the gut microbiome and systemic metabolism is incompletely understood. Here, we show that TCDD exposure in mice pro-foundly stimulates the hepatic expression of flavin-containing monooxygenase 3 (Fmo3), which is a hepatic xenobiotic metabolizing enzyme that is also responsible for the production of the gut mi-crobiome-associated metabolite trimethylamine N-oxide (TMAO). Interestingly, an enzymatic product of FMO3 (TMAO) has been associated with the same cardiometabolic diseases that these environmental pollutants promote. Therefore, here, we examined TCDD-induced alterations in the gut microbiome, host liver transcriptome, and glucose tolerance in Fmo3+/+ and Fmo3−/− mice. Our results show that Fmo3 is a critical component of the transcriptional response to TCDD, impacting the gut microbiome, host liver transcriptome, and systemic glucose tolerance. Collectively, this work uncovers a previously underappreciated role for Fmo3 in integrating diet–pollutant–microbe– host interactions.
CITATION STYLE
Massey, W., Osborn, L. J., Banerjee, R., Horak, A., Fung, K. K., Orabi, D., … Brown, J. M. (2022). Flavin-Containing Monooxygenase 3 (FMO3) Is Critical for Dioxin-Induced Reorganization of the Gut Microbiome and Host Insulin Sensitivity. Metabolites, 12(4). https://doi.org/10.3390/metabo12040364
Mendeley helps you to discover research relevant for your work.