Apx, the amphibian protein associated with renal amiloride-sensitive Na+ channel activity and with properties consistent with the pore-forming 150-kDa subunit of an epithelial Na+ channel complex initially purified by Benos et al. (Benos, D. J., Saccomani, G., and Sariban-Sohraby, S. (1987) J. Biol. Chem. 262, 10613-10618), has previously failed to generate amiloride- sensitive Na+ currents (Staub, O., Verrey, F., Kleyman, T. R., Benos, D. J., Rossier, B. C., and Kraehenbuhl, J.-P. (1992) J. Cell Biol. 119, 1497-1506). Renal epithelial Na+ channel activity is tonically inhibited by endogenous actin filaments (Cantiello, H. F., Stow, J., Prat, A. G., and Ausiello, D. A. (1991) Am. J. Physiol. 261, C882-C888). Thus, Apx was expressed and its function examined in human melanoma cells with a defective actin-based cytoskeleton. Apx-transfection was associated with a 60-900% increase in amiloride-sensitive (K(i) = 3 μM) Na+ currents. Single channel Na+ currents had a similar functional fingerprint to the vasopressin-sensitive, and actin-regulated epithelial Na+ channel of A6 cells, including a 6-7 pS single channel conductance and a perm-selectivity of Na+:K+ of 4:1. Na+ channel activity was either spontaneous, or induced by addition of actin or protein kinase A plus ATP to the bathing solution of excised inside-out patches. Therefore, Apx may be responsible for the ionic conductance involved in the vasopressin-activated Na+ reabsorption in the amphibian kidney.
CITATION STYLE
Prat, A. G., Holtzman, E. J., Brown, D., Cunningham, C. C., Reisin, I. L., Kleyman, T. R., … Cantiello, H. F. (1996). Renal epithelial protein (Apx) is an actin cytoskeleton-regulated Na+ channel. Journal of Biological Chemistry, 271(30), 18045–18053. https://doi.org/10.1074/jbc.271.30.18045
Mendeley helps you to discover research relevant for your work.