43 genes support the lungfish-coelacanth grouping related to the closest living relative of tetrapods with the Bayesian method under the coalescence model

23Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Since the discovery of the "living fossil" in 1938, the coelacanth (Latimeria chalumnae) has generally been considered to be the closest living relative of the land vertebrates, and this is still the prevailing opinion in most general biology textbooks. However, the origin of tetrapods has not been resolved for decades. Three principal hypotheses (lungfish-tetrapod, coelacanth-tetrapod, or lungfish-coelacanth sister group) have been proposed. Findings. We used the Bayesian method under the coalescence model with the latest published program (Bayesian Estimation of Species Trees, or BEST) to perform a phylogenetic analysis for seven relevant taxa and 43 nuclear protein-coding genes with the jackknife method for taxon sub-sampling. The lungfish-coelacanth sister group was consistently reconstructed with the Bayesian method under the coalescence model in 17 out of 21 taxon sets with a Bayesian posterior probability as high as 99%. Lungfish-tetrapod was only inferred from BCLS and BACLS. Neither coelacanth-tetrapod nor lungfish-coelacanth-tetrapod was recovered out of all 21 taxon sets. Conclusions: Our results provide strong evidence in favor of accepting the hypothesis that lungfishes and coelacanths form a monophyletic sister-group that is the closest living relative of tetrapods. This clade was supported by high Bayesian posterior probabilities of the branch (a lungfish-coelacanth clade) and high taxon jackknife supports. © 2011 Shan et al; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Shan, Y., & Gras, R. (2011). 43 genes support the lungfish-coelacanth grouping related to the closest living relative of tetrapods with the Bayesian method under the coalescence model. BMC Research Notes, 4. https://doi.org/10.1186/1756-0500-4-49

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free