Although many miRNAs are reported to be involved in tumor formation and progression, the effect of miR-219a-5p on breast cancer metastasis is not well-known. The aim of this study is to investigate the effect of miR-219a-5p on the migratory ability and epithelial-mesenchymal transition (EMT) of breast cancer cells. First, miR-219a-5p was found to be highly expressed in low-invasive breast cancer MCF-7 cells, but lowly expressed in high-invasive breast cancer MDA-MB-231 cells. Wound scratch assay and transwell assay showed that miR-219a-5p inhibited the migratory ability of MDA-MB-231 cells. miR-219a-5p also suppressed the cellular EMT, confirmed by suppressing the expression of mesenchymal markers vimentin and N-cadherin and increasing the expression of epithelial marker E-cadherin. Using the epithelial-mesenchymal-epithelial model in MCF-7 cells, we confirmed that the level of miR-219a-5p was highly expressed in epithelial-type cells and lowly expressed in mesenchymal-type cells. Importantly, we identified myocardin-related transcription factor A (MRTF-A) as a novel potential target gene of miR-219a-5p. Overexpression of miR-219a-5p in MDA-MB-231 cells could inhibit the expression of MRTF-A as revealed by real-time PCR and western blot analysis. miR-219a-5p inhibited the transcription of MRTF-A by targeting the 3′UTR of MRTF-A, which was confirmed by wild-type or mutant MRTF-A 3′UTR luciferase reporter system. Furthermore, knockdown of MRTF-A using siRNA for MRTF-A could depress breast cell migration. In conclusion, our present study revealed the tumor suppressive role of miR-219a-5p in regulating breast cancer migration by targeting MRTF-A, suggesting that miR-219a-5p might be a therapeutic target in breast cancer through regulating EMT.
CITATION STYLE
Zhuang, C., Yuan, Y., Song, T., Wang, H., Huang, L., Luo, X., … Zhang, T. (2017, December 1). miR-219a-5p inhibits breast cancer cell migration and epithelial-mesenchymal transition by targeting myocardin-related transcription factor A. Acta Biochimica et Biophysica Sinica. Oxford University Press. https://doi.org/10.1093/abbs/gmx114
Mendeley helps you to discover research relevant for your work.