The Wilson action for Euclidean lattice gauge theory defines a positive-definite transfer matrix that corresponds to a unitary lattice gauge theory time-evolution operator if analytically continued to real time. Hoshina, Fujii, and Kikukawa (HFK) recently pointed out that applying the Wilson action discretization to continuum real-time gauge theory does not lead to this, or any other, unitary theory and proposed an alternate real-time lattice gauge theory action that does result in a unitary real-time transfer matrix. The character expansion defining the HFK action is divergent, and in this work we apply a path integral contour deformation to obtain a convergent representation for U(1) HFK path integrals suitable for numerical Monte Carlo calculations. We also introduce a class of real-time lattice gauge theory actions based on analytic continuation of the Euclidean heat-kernel action. Similar divergent sums are involved in defining these actions, but for one action in this class this divergence takes a particularly simple form, allowing construction of a path integral contour deformation that provides absolutely convergent representations for U(1) and SU(N) real-time lattice gauge theory path integrals. We perform proof-of-principle Monte Carlo calculations of real-time U(1) and SU(3) lattice gauge theory and verify that exact results for unitary time evolution of static quark-antiquark pairs in (1+1)D are reproduced.
CITATION STYLE
Kanwar, G., & Wagman, M. L. (2021). Real-time lattice gauge theory actions: Unitarity, convergence, and path integral contour deformations. Physical Review D, 104(1). https://doi.org/10.1103/PhysRevD.104.014513
Mendeley helps you to discover research relevant for your work.