Luteal phase support for assisted reproduction cycles

216Citations
Citations of this article
85Readers
Mendeley users who have this article in their library.
Get full text
This PDF is freely available from an open access repository. It may not have been peer-reviewed.

Abstract

Background: Progesterone prepares the endometrium for pregnancy by stimulating proliferation in response to human chorionic gonadotropin (hCG), which is produced by the corpus luteum. This occurs in the luteal phase of the menstrual cycle. In assisted reproduction techniques (ART) the progesterone or hCG levels, or both, are low and the natural process is insufficient, so the luteal phase is supported with either progesterone, hCG or gonadotropin releasing hormone (GnRH) agonists. Luteal phase support improves implantation rate and thus pregnancy rates but the ideal method is still unclear. This is an update of a Cochrane Review published in 2004 (Daya 2004). Objectives: To determine the relative effectiveness and safety of methods of luteal phase support in subfertile women undergoing assisted reproductive technology. Search methods: We searched the Cochrane Menstrual Disorders and Subfertility Group (MDSG) Specialised Register, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, PsycINFO, CINAHL, Database of Abstracts of Reviews of Effects (DARE), LILACS, conference abstracts on the ISI Web of Knowledge, OpenSigle for grey literature from Europe, and ongoing clinical trials registered online. The final search was in February 2011. Selection criteria: Randomised controlled trials of luteal phase support in ART investigating progesterone, hCG or GnRH agonist supplementation in in vitro fertilisation (IVF) or intracytoplasmic sperm injection (ICSI) cycles. Quasi-randomised trials and trials using frozen transfers or donor oocyte cycles were excluded. Data collection and analysis: We extracted data per women and three review authors independently assessed risk of bias. We contacted the original authors when data were missing or the risk of bias was unclear. We entered all data in six different comparisons. We calculated the Peto odds ratio (Peto OR) for each comparison. Main results: Sixty-nine studies with a total of 16,327 women were included. We assessed most of the studies as having an unclear risk of bias, which we interpreted as a high risk of bias. Because of the great number of different comparisons, the average number of included studies in a single comparison was only 1.5 for live birth and 6.1 for clinical pregnancy. Five studies (746 women) compared hCG versus placebo or no treatment. There was no evidence of a difference between hCG and placebo or no treatment except for ongoing pregnancy: Peto OR 1.75 (95% CI 1.09 to 2.81), suggesting a benefit from hCG. There was a significantly higher risk of ovarian hyperstimulation syndrome (OHSS) when hCG was used (Peto OR 3.62, 95% CI 1.85 to 7.06). There were eight studies (875 women) in the second comparison, progesterone versus placebo or no treatment. The results suggested a significant effect in favour of progesterone for the live birth rate (Peto OR 2.95, 95% CI 1.02 to 8.56) based on one study. For clinical pregnancy (CPR) the results also suggested a significant result in favour of progesterone (Peto OR 1.83, 95% CI 1.29 to 2.61) based on seven studies. For the other outcomes the results indicated no difference in effect. The third comparison (15 studies, 2117 women) investigated progesterone versus hCG regimens. The hCG regimens were subgrouped into comparisons of progesterone versus hCG and progesterone versus progesterone + hCG. The results did not indicate a difference of effect between the interventions, except for OHSS. Subgroup analysis of progesterone versus progesterone + hCG showed a significant benefit from progesterone (Peto OR 0.45, 95% CI 0.26 to 0.79). The fourth comparison (nine studies, 1571 women) compared progesterone versus progesterone + oestrogen. Outcomes were subgrouped by route of administration. The results for clinical pregnancy rate in the subgroup progesterone versus progesterone + transdermal oestrogen suggested a significant benefit from progesterone + oestrogen. There was no evidence of a difference in effect for other outcomes. Six studies (1646 women) investigated progesterone versus progesterone + GnRH agonist. We subgrouped the studies for single-dose GnRH agonist and multiple-dose GnRH agonist. For live birth, clinical pregnancy and ongoing pregnancy rate the results suggested a benefit from progesterone + GnRH agonist, with significantly lower rates in the progesterone group. The Peto OR for the live birth rate was 0.40 (95% CI 0.26 to 0.61), for the clinical pregnancy rate was 0.74 (95% CI 0.60 to 0.90) and for the ongoing pregnancy rate was 0.76 (95% CI 0.60 to 0.97). The results for miscarriage and multiple pregnancy did not indicate a difference of effect. The last comparison (32 studies, 9839 women) investigated different progesterone regimens:intramuscular (IM) versus oral administration, IM versus vaginal or rectal administration, vaginal or rectal versus oral administration, low-dose vaginal versus high-dose vaginal progesterone administration, short protocol versus long protocol and micronized progesterone versus synthetic progesterone. The main results of this comparison did not indicate a difference of effect except in some subgroup analyses. For the outcome clinical pregnancy, subgroup analysis of micronized progesterone versus synthetic progesterone showed a benefit from synthetic progesterone, with a significantly lower rate in the micronized progesterone group (Peto OR 0.79, 95% CI 0.65 to 0.96). For the outcome multiple pregnancy, the subgroup analysis of IM progesterone versus oral progesterone suggested a benefit from oral progesterone, with a significantly higher rate in the IM progesterone group (Peto OR 4.39, 95% CI 1.28 to 15.01). Authors' conclusions: This review showed a significant effect in favour of progesterone for luteal phase support, favouring synthetic progesterone over micronized progesterone. Overall, the addition of other substances such as estrogen or hCG did not seem to improve outcomes. We also found no evidence favouring a specific route or duration of administration of progesterone. We found that hCG, or hCG plus progesterone, was associated with a higher risk of OHSS. The use of hCG should therefore be avoided. There were significant results showing a benefit from addition of GnRH agonist to progesterone for the outcomes of live birth, clinical pregnancy and ongoing pregnancy. For now, progesterone seems to be the best option as luteal phase support, with better pregnancy results when synthetic progesterone is used.

Cite

CITATION STYLE

APA

van der Linden, M., Buckingham, K., Farquhar, C., Kremer, J. A. M., & Metwally, M. (2011, October 5). Luteal phase support for assisted reproduction cycles. Cochrane Database of Systematic Reviews. John Wiley and Sons Ltd. https://doi.org/10.1002/14651858.CD009154.pub2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free