In the last decade, Sentiment Analysis and Affective Computing have found applications in different domains. In particular, the interest of extracting emotions in healthcare is demonstrated by the various applications which encompass patient monitoring and adverse events prediction. Thanks to the availability of large datasets, most of which are extracted from social media platforms, several techniques for extracting emotion and opinion from different modalities have been proposed, using both unimodal and multimodal approaches. After introducing the basic concepts related to emotion theories, mainly borrowed from social sciences, the present work reviews three basic modalities used in emotion recognition, i.e. textual, audio and video, presenting for each of these i) some basic methodologies, ii) some among the widely used datasets for the training of supervised algorithms and iii) briefly discussing some deep Learning architectures. Furthermore, the paper outlines the challenges and existing resources to perform a multimodal emotion recognition which may improve performances by combining at least two unimodal approaches. architecture to perform multimodal emotion recognition.
CITATION STYLE
Zucco, C., Calabrese, B., & Cannataro, M. (2021). Emotion Mining: from Unimodal to Multimodal Approaches. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 12339 LNCS, pp. 143–158). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-82427-3_11
Mendeley helps you to discover research relevant for your work.