Differential display RT-PCR was used on RNA isolated from the zebra finch telencephalon to identify gene products potentially involved in its development, including the sexually dimorphic nuclei responsible for song learning and production. A cDNA identified only in juvenile females was cloned and sequenced. It shares homology with neurocalcin, a calcium binding protein. Northern blots indicated three neurocalcin species. A 10.6 kb transcript was present in males and most females throughout development and in adulthood. Smaller 6.2 and 3.3 kb species were detected almost exclusively in females and primarily between posthatching days 18-25. In situ hybridization, using a probe that identified all three mRNA species, indicated a broad distribution in the telencephalon of both sexes, with particularly high levels in the song nucleus RA. Across regions examined, neurocalcin expression was enhanced in females compared to males, probably reflecting the presence of the two smaller transcripts. However, within RA, neurocalcin expression was statistically equivalent between the sexes. These data indicate that calcium signaling via neurocalcin may be involved in telencephalic development, but suggest that sexually dimorphic expression of this gene exists on a level too general to specifically regulate masculine or feminine development of song control regions. Neurocalcin might: broadly influence functional differentiation, including areas that are not morphologically distinct between the sexes; be a benign consequence of general dimorphisms, such as those due to sex chromosomes; or involve a compensatory mechanism, which allows function of the juvenile female telencephalon to equal that of males, despite fundamental physiological differences. © 2003 Wiley Periodicals, Inc.
CITATION STYLE
Veney, S. L., Peabody, C., Smith, G. W., & Wade, J. (2003). Sexually dimorphic neurocalcin expression in the developing zebra finch telencephalon. Journal of Neurobiology, 56(4), 372–386. https://doi.org/10.1002/neu.10246
Mendeley helps you to discover research relevant for your work.